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Heart failure (HF) is associated with high morbidity and mortality
and its incidence is increasing worldwide. MicroRNAs (miRNAs) are
potential markers and targets for diagnostic and therapeutic appli-
cations, respectively. We determined myocardial and circulating
miRNA abundance and its changes in patients with stable and
end-stage HF before and at different time points after mechanical
unloading by a left ventricular assist device (LVAD) by small RNA
sequencing. miRNA changes in failing heart tissues partially resem-
bled that of fetal myocardium. Consistent with prototypical miRNA–
target-mRNA interactions, target mRNA levels were negatively cor-
related with changes in abundance for highly expressed miRNAs in
HF and fetal hearts. The circulating small RNA profile was domi-
nated by miRNAs, and fragments of tRNAs and small cytoplasmic
RNAs. Heart- and muscle-specific circulating miRNAs (myomirs)
increased up to 140-fold in advanced HF, which coincided with a
similar increase in cardiac troponin I (cTnI) protein, the established
marker for heart injury. These extracellular changes nearly com-
pletely reversed 3 mo following initiation of LVAD support. In stable
HF, circulating miRNAs showed less than fivefold differences com-
paredwith normal, and myomir and cTnI levels were only captured
near the detection limit. These findings provide the underpinning
for miRNA-based therapies and emphasize the usefulness of circu-
lating miRNAs as biomarkers for heart injury performing similar to
established diagnostic protein biomarkers.

exRNA | body fluids | miRNA-mRNA regulation | development |
cardiovascular disease

The clinical syndrome of heart failure (HF) is the result of
heterogeneous myocardial or vascular diseases, and is defined

by the insufficiency to maintain blood circulation throughout the
body. Despite significant advances in the clinical management of
HF, conventional therapies are ultimately ineffective in many
patients who progress to advanced HF. In these cases, implanta-
tion of left ventricular assist devices (LVADs) and/or heart trans-
plantation remain the only viable options.
MicroRNAs (miRNAs) are promising targets for drug and bio-

marker development (1). They represent an abundant class of
regulatory 20- to 23-nt RNAs (2), and each miRNA is able to down-
regulate hundreds of target mRNAs comprising partially comple-
mentary sequences to the miRNAs. Binding of miRNA-containing
ribonucleoproteins (miRNPs) to mRNAs leads to recruitment of
the CCR4–NOT deadenylase complex and subsequent mRNA de-
stabilization as well as inhibition of translation (3).
Target recognition requires base pairing of the miRNA 5′-end

nucleotides (seed sequence) to complementary target mRNA
regions located typically within the 3′UTR (2). The recent de-
tection of miRNPs in body fluids (4) pointed toward their value
as biomarkers for tissue injury (5, 6), and they have also been

discussed as paracrine and endocrine regulators of gene ex-
pression (4, 7).
The function of miRNAs has been widely studied in animal

models of HF. The muscle-specific miR-1/206 and miR-133a/b
and the heart-specific miR-208a/b and miR-499 (also referred to
as myomirs) (Fig. S1) were shown to contribute to muscle or
myocardial function (8, 9). miRNAs and other classes of RNA
have been profiled in failing human myocardium (10–17), and
a selected subset was also investigated as circulating biomarkers in
HF (18–24). However, in these studies heart tissue and circulating
miRNA abundance changes were not acquired simultaneously to
correlate changes in tissue versus circulating miRNA composition.
Here, we report myocardial and circulating sRNA composi-

tion changes in human HF demonstrating that relative miRNA
abundance changes in myocardial tissue could not be detected
within the pool of circulating miRNAs. However, we show that
myocardial miRNAs still serve as excellent biomarkers of heart
muscle injury similar to an established protein biomarker. In
heart tissues, we observed that changes in abundant miRNAs
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coincided with seed-dependent mRNA target responses in-
dicative of active miRNA regulation during development and
disease. This may impact development of miRNA-based ther-
apeutic intervention.

Results
miRNA Profiles in the Left Ventricular Myocardium. RNA was iso-
lated from left ventricular tissue samples from a total of 47
subjects: 21 patients with advanced HF due to dilated cardio-
myopathy (DCM), 13 patients with advanced HF due to ischemic
cardiomyopathy (ICM), 8 individuals without heart disease
(NFs), and 5 fetuses (FETs) (Fig. 1). The advanced HF samples
were collected at the time of LVAD implantation (DCM/ICM
HF) and LVAD explantation (DCM/ICM LVAD) during heart
transplantation (Table S1, and Dataset S1). The median total
RNA yield was 0.5 μg per milligram of myocardium [inter-
quartile range (IQR) = 0.2; Fig. S2A]. We obtained a median of
4.6 million miRNA reads per cardiac tissue sample (0.4–10.6
million), representing 67–93% of the total reads. In selected
noncardiac samples included for comparison, the median was 1.7
million miRNA reads (0.6–2.9 million), representing 37–99% of
total reads (Dataset S1). The myocardial miRNA content was 20
fmol per microgram of total RNA (IQR = 9 fmol; Fig. S2B) and
was calculated from the read ratios of all miRNA reads to
spiked-in calibrator reads. The miRNA content was not signifi-
cantly different between groups (Fig. S2B) and comparable with
other tissues (25). We reviewed the sequence alignments of un-
annotated reads to the genome and found no evidence of novel
highly expressed miRNA genes. We also analyzed miRNA
sequence variation as described previously (25–27) and found
no novel SNPs in positions known to affect miRNA biogenesis
or their target mRNA regulation (Dataset S1).
To investigate myocardial miRNA expression changes, we

combined the reads corresponding to miRNA genes organized in
miRNA cistrons (25, 28). The cistrons are all labeled in lower-
case followed by the number of the founding member and the
number of cistronic miRNAs in parentheses (for details, see

Fig. S1; results for individual miRNAs and miRNA families are in
Dataset S1). Forty-two miRNA cistrons changed in DCM (23 up
and 19 down) and 54 cistrons changed in ICM (30 up and 24
down) HF compared with NF (Fig. 2A). The majority of these
differences affected miRNAs with low expression [Fig. 2A (to
the left of the dashed line) and Dataset S1]. Experiments with
siRNAs or antagomirs (29) showed that only highly expressed
miRNAs effectively repress target mRNAs. For simplicity of
data presentation and discussion, we thus focused on regulatory
miRNAs that contribute to ∼85% of sequencing reads per
sample (7, 25), corresponding to 15, 25, 21, and 28 miRNA
cistrons in NFs, FETs, DCM HF, and ICM HF, respectively
(Fig. 2 A–C and Fig. S2C). Of these highly expressed cistrons
∼20% changed in DCM HF and ICM HF compared with NFs
ranging in absolute values from 1.4-fold for mir-1-1(4) to 2.9-
fold for mir-221(2) (Fig. 2A). The most highly expressed cistron
mir-1-1(4) in myocardial tissue changed from an average read
frequency of 25% in NF to 18% (1.4-fold) and 17% (1.6-fold) in
DCM HF and ICM HF, respectively. Although some of the
differentially expressed cistrons were common to DCM HF and
ICM HF, others were exclusive to ICM HF (Dataset S1). In-
terestingly, the myomirs mir-208a(1), mir-208b(1), and mir-499
(1) were unaltered in either DCM HF or ICM HF. Considering
less abundant miRNA cistrons and their variation across sample
groups, they were typically less than fourfold, except for mir-
216a(3) that increased 22-fold in DCM HF and a 47-fold in ICM
HF compared with NFs (Fig. 2A). mir-216a(3) was at least 10
times higher expressed in human umbilical vein endothelial cells
(HUVECs) possibly indicative of altered endothelial cell function
in the heart. Finally, we did not observe significant changes in
miRNA cistron expression comparing the patient-matched myo-
cardial samples taken at the time of LVAD implantation and
during explantation (Dataset S1).
In FETs, a total of 111 cistrons changed compared with NFs

(54 up and 57 down; Fig. 2B). In contrast to DCM and ICM HF,
60% of the highly expressed miRNAs in FETs were differentially
regulated at a higher magnitude than in failing myocardium (Fig.
2B and Dataset S1). This was particularly the case for mir-29a(4).
This cistron was expressed at 0.06% read frequency in FETs and
increased 90-fold to 5.6% in NFs, whereas its expression was
unchanged in HF. We observed a similar large difference in
mir-29a(4) expression in skeletal muscle (Fig. 2C). Considering
myomir expression, levels of mir-1-1(4) were reduced in FETs
versus NFs, mirroring the changes in HF described above; how-
ever mir-208a(1), mir-208b(1), and mir-499(1), all of which are
located in introns of myosin genes, were lower by 2.6-, 4.0-, and
3.9-fold, respectively, and unaltered in HF.

Identification of miRNA-Guided Repression of Target mRNAs in the
Myocardium. miRNAs predominantly mediate mRNA destabi-
lization (30). To evaluate if the observed changes in miRNA
abundance between HF or FETs compared with NFs were reflected
in quantifiable differences in target mRNA abundance, we per-
formed a correlational analysis of the abundance of miRNA se-
quence families (sf) and miRNA seed-containing mRNAs versus
residual mRNAs. mRNA levels were determined using Illu-
mina BeadChips (n = 4 for each condition; Fig. S3 and Dataset
S1). Indicative of miRNA regulation (31), we found that target
mRNAs containing miRNA binding sites in their 3′UTRs were
more repressed than those with sites in their coding sequence (Fig.
S4 A and B) and repression increased according to the extent of
seed pairing between miRNA and mRNAs (8-mer > 7-mer-m8 ≈
7-mer-A1 > 6-mer; Fig. 2 D and E and Fig. S4). Target mRNAs
for sf-miR-1-1(3) detected with a probing signal intensity above
the median and comprising at least one 8-mer site in the 3′UTR
were elevated on average by 1.03-fold in DCM or ICM HF (P =
0.006 and 0.002, respectively), and 1.09-fold (P = 1.13 × 10−6)
higher in FETs compared with NFs. mRNAs detected by signal
intensities in the top 25% range were 1.05-fold (P = 0.02) and
1.04-fold (P = 0.002) higher in DCM and ICM HF, respectively
and 1.2-fold (P = 2.13 × 10−5) higher in FETs compared with NFs

Advanced HF
34 (51)

FET
5 (7)

 NF
8 (10)

Advanced HF
34 (36)

LVAD Explantation
15(15)

DCM LVAD
8 (8)

ICM LVAD
7 (7)

DCM HF
21 (22)

ICM HF
13 (14)

Myocardium
47 individuals (68 samples)

Plasma
51 (85)

Stable HF
14 (14)

Advanced HF
24 (54)

 NF
13 (17)

Advanced HF
24 (27)

3M LVAD
10 (10)

6M LVAD
10 (10)

LVAD Explantation
7 (7)

Serum
18 (18)

Advanced HF
7 (14)

 NF
4 (4)

Advanced HF
7 (7)

LVAD Explantation
7 (7)

Fig. 1. Number of individuals in each group and tissue with the number of
samples shown in parentheses. Advanced HF group at LVAD implantation
3 mo (3M LVAD) or 6 mo (6M LVAD) after LVAD implantation and at LVAD
explantation.
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(Fig. S4 C and D). This observation indicates that higher-expressed
target mRNAs respond better to miRNA regulation or are
better quantifiable by hybridization expression analysis. The tar-
get analysis gave similar responses for other dysregulated miRNA
families (Fig. S4 E–M). Collectively, these findings support bona
fide miRNA regulation in heart tissues under normal and disease
conditions for well and differentially expressed miRNAs.

The Circulating Small RNA Pool Consists of miRNAs and Fragments of
tRNAs and Small Cytoplasmic RNAs. To determine whether myo-
cardial miRNA expression changes translated into measurable
changes in the circulating miRNA fraction, we isolated total
RNA from potassium–EDTA-treated plasma as well as serum
samples from three cohorts representing different clinical stages
of HF (Fig. 1 and Table S2): Cohort 1 included healthy controls
(NF, n = 13); cohort 2 included patients with advanced HF with
samples collected at LVAD implantation (advanced HF, n = 24)
and during routine outpatient visits after 3 mo (3M LVAD, n =
10) or 6 mo (6M LVAD, n = 10), and at the time of LVAD
explantation (n = 7). Twelve of the 24 advanced HF samples
were procured from patients for whom we generated myocardial
miRNA profiles. Cohort 3 included ambulatory patients with
highly reduced left ventricular function stabilized with conven-
tional pharmacologic therapy (stable HF, n = 14). We sequenced
sRNA cDNA libraries prepared from plasma total RNA from all

patients of the three cohorts as well as libraries prepared from
serum total RNA from 18 individuals of cohorts 1 and 2 (serum–
plasma pairs).
The median recovery of total RNA was 30 ng/mL (IQR = 17

ng/mL) for plasma and 69 ng/mL (IQR = 70 ng/mL) for serum
(Fig. S5 A and B). The circulating sRNA content was mainly
miRNAs, and fragments of small cytoplasmic RNAs (scRNAs)
and tRNAs. The average plasma and serum tRNA composition
differed 47-fold and was 0.6% (IQR 0.9%) in plasma and 28%
(IQR 33%) in serum, whereas the scRNA content remained
stable (Fig. S5 C and D). EDTA treatment has been shown re-
cently to destabilize tRNA-containing RNPs in plasma (32)
without affecting scRNAs (33).
The serum samples had a median of 0.9 million miRNA reads

(80,000 to 6 million) and the plasma samples 1.4 million (40.000
to 14 million; Dataset S1). The median miRNA content was
51 fmol/μg total RNA (IQR = 26 fmol/μg) in serum, and due to
the lower tRNA concentration, higher in plasma with 116 fmol/μg
total RNA (IQR = 119 fmol/μg; Fig. S5 E and F). This value was
5- to 10-fold higher than previously noted in plasma samples (7),
and likely the result of a different RNA isolation protocol here
that avoided column-based RNA isolation.

The Circulating miRNA Profile in HF. The most abundant circulating
miRNAs in healthy individuals probably originate from circulating

A B C

D E

Fig. 2. miRNA cistron abundance changes and target gene regulation in failing and fetal myocardium. (A and B) Relative changes in miRNA cistron
abundance compared with nonfailing postnatal hearts. Cistrons with a false discovery rate (FDR) of <10% are colored red if up- regulated and blue if down-
regulated. Cistrons contributing to the top 85% sequencing reads are to the right and residual cistrons to the left of the dotted vertical line. Labeled in both A
and B for comparison are (i) cistrons consistently changed in DCM and ICM HF, (ii) myomirs, and (iii) mir-216a(3) and mir-29a(4) due to their large differences.
(C) Unsupervised hierarchical clustering of miRNA cistrons representing the cumulative top 85% miRNA sequence reads with residual cistrons represented as
“all–other” at the bottom of the heatmap. The row dendrogram has been omitted. The column labels at the bottom represent the unique IDs for each
subject; demographic details on the individual subjects and for each sequencing sample can be found in Dataset S1 (Tables 34 and 35). (D and E) Cumulative
distribution function (CDF) showing the changes in mRNA abundance (x axis) for transcripts with different target sites (colored) for family miR-1-1(3) in the 3′
UTR compared with transcripts without a site in the 3′UTR (black line). Colored points at bottom of the graph indicate the median of the CDF; P values are
from a one-sided Kolmogorov–Smirnov test.
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blood cells (7) and endothelial cells, where they are highly expressed
(Fig. 3A and Fig. S5G). In healthy individuals, only a few miRNAs

known to be specifically expressed in solid tissues were among
the top 85% sequence reads, including mir-122(1) from liver and

LVAD Support
Explantation
3M LVAD
6M LVAD
No
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Advanced HF
Stable HF
None
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HUVEC
PBMC
RBC

−20

−15
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−5

 log 2 read freq.

199a−1(3)
134(41)
10b(1)
143(2)
378(1)
122(1)
1−1(4)
150(1)
144(2)
15a(4)
21(1)
17(12)
98(13)

all−other

22(1)
25(3)
30a(4)
126(1)
103−1(2)
26b(1)
191(2)
26a−1(2)
23a(6)
486(1)
223(1)
142(1)
146a(1)
148b(1)
320(1)
423(1)
148a(1)
30b(2)
151(1)
101−1(2)
140(1)
7i(1)
135a−1(3)
29a(4)
221(2)
181a−1(4)

all−other

1−1(4)
208b(1)
208a(1)
133b(2)
499(1)

LVAD Support

HF Class

Tissue

A B

myomirs
liver-specific mir-122(1) and
chrondrocyte-typic mir-140(1)

Fig. 3. miRNA composition in circulation. (A) Unsupervised hierarchical clustering of miRNA cistrons contributing to the cumulative top 85% sequence reads
in plasma samples compared with red blood cells (RBCs), peripheral blood mononuclear cells (PBMCs), and HUVECs. (B) Unsupervised clustering of the same
samples as in A but restricted to myomir cistrons with other miRNAs summarized in “all–other” at the bottom of the heatmap. The order of the annotation
tracks above the heatmap and the legend are the same for A and B. The column labels at the bottom of the heatmaps are the unique IDs for each subject;
demographic details on the individual subjects and for each sequencing sample can be found in Dataset S1 (Tables 34 and 35). For corresponding heatmaps
with all serum and plasma samples, see Fig. S5 G and H.

Fig. 4. Circulating miRNA dynamics in HF. (A) Changes of muscle-specific and other selected miRNA cistrons in circulation comparing the conditions as in-
dicated in the column headings. Red bars represent higher levels and blue bars lower levels in each comparison. The gray shading marks changes that have an
FDR < 10%. (B and C) Correlation of cistron mir-208b(1) with cTnI (B) and BNP (C) levels showing the fit (blue line) and its 95% confidence interval (CI) (gray
shading). (D) Receiver operating characteristic curve comparing the performances for cTnI and mir-208b(1) in distinguishing patients with advanced HF at the
time of LVAD implantation from healthy control individuals. Areas around the blue and red lines represent 95% CI. The cross marks represent the best
threshold value, which was 0.044 ng/mL (95% CI: 0.01, 0.05) for cTnI and a relative frequency of 0.0018% (95% CI: 0.0015, 0.0019) for mir-208b(1).
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mir-1-1(4) from muscle, but not the cardiac-specific myomirs. The
combined myomir abundance in healthy individuals was less than
0.1%, however, it increased to over 1% in advanced HF patients.
Myomirs displayed the biggest differences in levels among the
119 significantly changed miRNA cistrons (64 up and 55 down) in
advanced HF patients compared with NFs. The cardiac-specific
myomirs mir-208b(1), mir-208a(1), and mir-499(1) and the mus-
cle-specific mir-1-1(4) and mir-133b(2) were 143-, 78-, 28-, 18-,
and 21-fold higher in advanced HF at LVAD implantation
compared with NFs (Figs. 3B and 4A and Fig. S5H). We also
noted a 25-fold increase in mir-216a(3) in advanced HF, which at
first sight paralleled a similar magnitude change in cardiac tissue.
However, analysis of individual–paired samples and of absolute
amounts suggested that the increase in circulating mir-216a(3) in
advanced HF was not directly linked to the release of cardiac
myomirs. More likely, endothelial cells, which express mir-216a(3)
at higher levels than whole heart tissue, released it in response to
advanced HF and its clinical management. Overall, 19 cistrons
differed more than fivefold in advanced HF compared with NFs.
The miRNA changes in advanced HF reversed 3 and 6 mo after

LVAD implantation. The levels of the myomirs mir-208a(1),
mir-208b(1), mir-499(1), and mir-1-1(4) dropped as early as 3 mo
after the initiation of LVAD support, approaching normal levels
(Fig. 4A and Dataset S1). At LVAD explantation, the myomir
levels rose again with alterations comparable in magnitude to
those observed at implantation (Dataset S1).
Surprisingly, in stable HF patients the myomir levels were

comparable with NFs, and the biggest differences noted were a
5.4-fold increase for mir-375(1) and a 4.5-fold drop for mir-203(1).
Furthermore, there were some concordant changes in both stable
and advanced HF compared with NFs: mir-210(1) was 2.2- and
1.9-fold higher in advanced HF and in stable HF, respectively.
mir-1908(1) was 2.0- and 2.1-fold, and mir-1180(1) 4.5- and 4.0-fold
higher in patients with advanced HF and in patients with stable
HF, respectively (Fig. 4A).
Considering that myomirs showed the largest increase in the

circulation of advanced HF patients compared with NF and are
tissue-specifically expressed, we wanted to compare their levels
with those of cardiac troponin I (cTnI) and B-type natriuretic
peptide (BNP) protein levels, established biomarkers for myo-
cardial injury and dysfunction, respectively (Dataset S1). Higher
levels of the heart-specific myomirs mir-208a(1), mir-208b(1)
(Fig. 4B), and mir-499(1) were positively correlated with cTnI
(R = 0.75, P = 4.73 × 10−6; R = 0.76, P = 4.59 × 10−7; and R =
0.6, P = 8.86 × 10−5, respectively) but not correlated with BNP
(Fig. 4C). The cTnI concentrations in the serum of NFs were
below the detection limit of 0.01 ng/mL, except for one sample
reaching 0.03 ng/mL, closely followed by a median of 0.04 ng/mL
in 3M or 6M LVAD (IQR = 0.05), a median of 0.09 ng/mL (IQR =
0.12) in stable HF, a median of 0.5 ng/mL (IQR = 1.18) in patients
with advanced HF at LVAD implantation, and maximum con-
centrations with a median of 9.8 ng/mL (IQR = 15.8) at LVAD
explantation. In the supervised classification area under the
receiver operating characteristic curve the heart-specific cistrons
performed similar to cTnI (Fig. 4D). Together, these results
did not support a role for circulating miRNAs as biomarkers
of cardiac function beyond myocardial injury.

Discussion
We used a small RNA-sequencing (sRNAseq) protocol de-
veloped for parallel processing of large sample collections with
limited amounts of input RNA (7, 34, 35) to record the miRNA
composition in heart tissue and in circulation in a large cohort of
HF patients and normal controls. Using the same method for
miRNA profiling eliminated biases (26) otherwise affecting com-
parison of our data with studies, which previously profiled either
tissue or circulating miRNAs in HF, but never both.
To identify changes in myocardial miRNAs abundant enough

to trigger measurable differences in mRNA expression by miRNA-
mediated degradation, we at first considered miRNAs contrib-
uting to the top 85% sequence reads. For these highly expressed

miRNAs, the overall abundance in failing myocardium compared
with normal postnatal myocardium differed not more than two-
fold, in agreement with a recent RNAseq tissue study by Yang
et al. (17). The same miRNAs were also altered in heart de-
velopment but changed up to sixfold. These alterations in
miRNA abundance resulted in an average of 1.02- to 1.20-fold
miRNA seed-dependent mRNA destabilization similar to ob-
served values in mechanistic studies (31, 36).
Although miRNA expression changes in HF tissue have been

studied extensively by hybridization-based methods, there is
little consensus due to variation in methods and analysis (37).
The miRNA signature of failing myocardium in our study com-
prised alterations of miRNA cistrons mir-1-1(4), mir-195(2),
mir-199a-1(3), mir-199b(2), and mir-221(2). The mir-1-1(4) genes
are induced during heart development and act as central regu-
lators of muscle differentiation (38–40). The down-regulation of
the myomir mir-1-1(4) therefore supports a myogenic dediffer-
entiation in human HF. The reported regulation in human HF
and fetal myocardium, however, has been controversial, including
observations of increased mir-1-1(4) expression (11, 14). Fur-
thermore, we only detected marginal differences in miRNA ex-
pression between ICM and DCM hearts and no differences
before and after LVAD support, both of which are supported
by another recent RNAseq study (17), but contrasted with a
microarray-based study reporting more dramatic differences
in their comparison of hearts before and after LVAD treat-
ment (14). It is conceivable that distinctive myocardial miRNA
changes reflecting heterogeneous genetic or environmental
etiologies as well as the myocardial response to pharmaco-
logic and nonpharmacologic therapies exist and that these
changes are detectable at early stages of HF. Tissue from early
stages is hardly available at sufficient quantities and, there-
fore, studies on human myocardium typically focus on later
stages of the disease (37).
Although many of the HF-associated changes were also evi-

dent in fetal myocardium, we noted previously unreported dif-
ferences—such as a the 90-, 10-, and 6-fold lower abundance of
mir-29a(4), mir-22(1), and mir-195(2), respectively—in fetal but
not failing myocardium compared with nonfailing myocardium.
Several of these abundant miRNAs were shown to inhibit cell
cycle progression in cultured cardiomyocytes (41) and in vivo
(42). A similar difference in mir-29a(4) expression between fetal
and adult skeletal muscle indicates a more ubiquitous anti-
proliferative role of mir-29a(4). Of note, HF is associated with
loss of cardiomyocytes (43) and the mammalian heart has a very
limited regenerative capacity (44). The reactivation of self-repair
mechanisms by targeting miRNAs represents a possible ap-
proach to enhance regeneration (45).
The composition of circulating sRNAs was dominated by

miRNAs that are abundant in hematopoietic cells (7) and/or the
endothelium. The contribution of myomirs to all circulating
miRNAs was less than 0.1% in healthy controls and patients with
moderate and stable HF. However, the myomirs increased to
over 1% in patients with advanced HF and reduced to nearly
normal levels at 3 and 6 mo after LVAD implantation. The
myomirs are subdivided into the cardiac-specific mir-208a(1),
mir-208b(1), and mir-499(1) and the broadly muscle-specific mir-
1-1(4) and mir-133b(2), the latter of which are responsible for
the circulating myomir background levels in healthy individuals.
Hence, mir-1-1(4) and mir-133b(2), which together contributed
30% of all myocardial miRNAs, showed a reduced fold increase
during HF compared with cardiac-specific myomirs. The relative
abundance of the three heart-specific myomirs in circulation
closely followed the ratio determined in heart tissue and is
consistent with it being the only source.
Increased circulation of myomirs strongly correlated with in-

creased cTnI but not BNP protein levels; these proteins are
established diagnostic heart injury and heart function markers,
respectively. Increases in circulating miRNAs upon cell damage
have been detected by RT-PCR–based approaches for liver,
brain, and skeletal muscle (5), as well as heart (19, 46). In some
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instances miRNAs even performed better than established pro-
tein biomarkers (5). Our analysis indicated that heart-specific
myomirs performed similar to the highly sensitive cTnI assay, but
we were unable to verify the utility of any recently proposed
miRNA biomarker for HF (18, 20–22).
Considering that sRNAseq experiments capture a wide spectrum

of miRNAs as well as fragments of other classes of RNAs, and
can be performed with low ng quantities of total RNA recover-
able from 250 μL plasma or serum, this approach holds great
potential for future RNA biomarker discovery. The translation of
this type of RNAseq assay into clinical practice is currently limited
by the time required for cDNA library preparation and sequenc-
ing, however, single-molecule direct RNAseq (47) or targeted
RT-PCR assays may overcome some of these limitations.

Materials and Methods
Tissue Procurement. Human myocardial tissue samples were obtained from
the National Disease Research Interchange (Philadelphia) and from the
Columbia University Medical Center, and after elective termination of preg-
nancy for nonmedical reasons. Serum and plasma samples were obtained from
the Columbia University Medical Center.

RNA Isolation. Total RNA from solid tissue and liquid samples was isolated
with a modified TRIzol protocol and recovered by alcohol precipitation.

Liquid sample RNA recovery included addition of glycogen for coprecipitation.
Tissue total RNA was further purified by Qiagen RNeasy columns for bead
array studies.

sRNAseq and Gene Expression Analysis. The cDNA library preparation and
annotation were done as described (27, 34, 35) with modifications for library
preparations of serum and plasma samples. A calibrator cocktail of 10 22-nt
synthetic oligoribonucleotides was used for quantification purposes and
quality control (Fig. S6) (34). mRNA expression was assessed on Illumina
HumanHT-12v4 bead arrays according to the manufacturer’s instructions.

The data were analyzed in the R statistical language (48). The functional
studies testing miRNA regulation followed the approach by Grimson et al.
(31). Differences in RNA quantification for unpaired samples were tested
using the Kruskal–Wallis rank sum test and for paired samples using the
Wilcoxon signed rank test. The differences in the cumulative distributions
were tested using the one-sided Kolmogorov–Smirnov test.

For details, see SI Materials and Methods.
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